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Abstract-A new theory is presented for the matrix analysis of prestressed structural mechanisms
made from pin-jointed bars. The response of a prestressed mechanism to any external action is
decomposed into two almost separate parts, which correspond to extensional and inextensional
modes. A matrix algorithm which treats these two modes separately is developed and tested. It is
shown that the equilibrium requirements for the assembly, in its initial configuration as well as in
deformed configurations which are obtained through infinitesimal inextensional displacements, can
be fully described by a square equilibrium matrix. It is also shown that any set of extensional nodal
displacements has to satisfy some equilibrium conditions as well as standard compatibility equations,
and that the resulting system of linear equations defines a square kinematic matrix. Theoretical as
well as experimental evidence supporting this approach is given in the paper; two simple experiments
which were of crucial importance in arriving at the equilibrium conditions on the extensional
displacements are described.

The interaction between the two modes of action of a prestressed mechanism is discussed,
together with a rapidly converging iterative procedure to handle it. A study of the non-linear
effect by which the self-stress level in a statically indeterminate assembly rapidly increases if an
inextensional mode is excited, supported by further experimental results, concludes the paper.
This work is relevant to the analysis of most cable systems, pneumatic domes, fabric roofs, and
"Tensegrity" frameworks.

NOMENCLATURE

(dimensions of vectors and matrices shown in parentheses)
A standard equilibrium matrix (3j-c x b)
A' modified equilibrium matrix (3j-cx 3j-c), A' = A'IG
b total number of bars
B standard compatibility matrix (b x 3j-c)
B' modified compatibility matrix B' =(AT
c total number of kinematic constraints
d vector of nodal displacements (3j-c)
D matrix of inextensional mechanisms (3j - c x m)
d' inextensional mechanism no. i (3j-c)
e vector of bar elongations (b)
l: vector of imposed bar elongations, due to lack-of-fit, etc. (b)
F matrix of bar flexibilities (b x b)
G matrix of geometric loads (3j-c x m)
j total number ofjoints
I vector of nodal loads (3j-c)
L i length of bar i
m number of inextensional mechanisms
r rank of equilibrium matrix
s number of independent states of self-stress
ss self-stress vector (b)
SS self-stress matrix (b x s)
t vector of bar axial forces (b)
Xi' Yi' Zi Cartesian coordinates ofjoint i
II vector of s real numbers (s)
/I, l' vectors of m real numbers (m)
( )0 indicates an initial or reference state, while tS( ) denotes the difference between ajinal and an initial state; ( Y
denotes a vector or. a matrix of a reduced size, obtained by removing all elements which correspond to redundant
bars; ( ),,) and ( lIn) denote mode (i) and mode (ii) response, respectively; and ( )C denotes a corrective vector.

\. INTRODUCfION

Prestressed mechanisms are becoming increasingly popular in structural engineering. The
most commonly used types include cable systems (Le. single hanging cables and cable nets),
pneumatic domes, fabric roofs, and "Tensegrity" frameworks, all of which rely on prestress
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to achieve stiffness, and also to prevent any cable segments or fabric panels from becoming
slack.

The structural analysis techniques employed for normal structures break down when
applied to mechanisms, and therefore it is common practice to resort to geometrically non­
linear iterative schemes for the above structures, as described by Mollmann (1974) and
Buchholdt (1985). However, this kind of approach does not provide much insight: the
deflections due to any load condition, or the effects of a design change, can be computed
to a high accuracy, but no rough estimates can be made. Paradoxically, though, the
deflections one computes are often small, in the sense of a conventional small-displacement
theory, and hence a full-powered non-linear approach seems unjustified.

This paper, pursuing an approach initiated by Calladine (1982) and Pellegrino and
Calladine (1984), sets up a new theory for the analysis of kinematically indeterminate
prestressed assemblies, based upon an essentially linear approach which captures the main
features of their behaviour. Throughout the paper, we shall deal with three-dimensional
assemblies whose j joints are connected by b pin-jointed bars; a total number of c kinematic
constraints prevent the joints from moving in certain directions. Each bar can resist both
tensile and compressive axial forces, and its deformation follows a linear-elastic law. Cable
segments are not ruled out: in the hypothesis that a suitable state of pretension prevents
them from becoming slack, we shall assume that they can be treated as bars for the sake of
the analysis. We shall also briefly consider the possibility of cable slackening.

A crucial, initial step is that of introducing the structural variables which are required
for our study.

1.1. Static variables
The x-, y-, and z-components of the external forces applied at each node of the

assembly, in an unconstrained direction, are assembled in the (3j - c)-dimensional nodal
loads vectors I. The b axial forces are assembled in the tension vector t, with the convention
that ti (axial force in bar i) is positive if tensile. (For statically indeterminate assemblies,
which will be formally introduced later in this section, it is convenient to introduce also the
vector tr

, which contains a reduced number of axial forces.)

1.2. Kinematic variables
The x-, y-, and z-components of the displacement of each node of the assembly,

excluding (as for I) kinematically constrained directions, are assembled in the (3j-c)­
dimensional nodal displacements vector d. The b bar elongations are assembled to form the
elongation vector e, in which a positive ith component ei (elongation of bar i) denotes an
increase of length. (For statically indeterminate assemblies, a reduced elongation vector er

will also be considered.)
Until further notice we shall operate within the context of a conventional small­

deflection theory; in particular, any type of instability, e.g. snap-through, is ruled out.
Therefore the following relationships between the four sets of structural variables are
satisfied.

1.3. Equilibrium
The static variables I and t have to satisfy a set of linear equilibrium equations, which

are usually written in the form

At = I. (I)

The (3j- ex b) coefficient matrix A is the equilibrium matrix of the assembly. In setting up
the system (I) we consider three equilibrium equations for any unconstrained joint, but we
consider a reduced number of equations for those pin-joints which are held by kinematic
constraints to a rigid boundary. Details can be found in Livesley (1975) and Pellegrino and
Calladine (1986).
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1.4. Compatibility
The kinematic variables d and e have to satisfy a set of linear compatibility equations

Bd = e. (2)

The (b x 3j-c) coefficient matrix B is the compatibility matrix of the assembly. B can be
obtained from considerations ofcompatibility ofdeformation for each bar of the assembly,
or directly from the equilibrium matrix, since B = AT (Livesley, 1975).

1.5. Material behat,iour
The elongation e; consists of an initial, or inelastic, part f; due to thermal strains, lack

of fit, etc., and of a linear-elastic part j;t;. Here the axial flexibility /; of bar i depends on
its length L;, cross-sectional area A; and Young's modulus E;:/; = L;/A;E;. Thus, the total
elongation of bar i is e; = f;+/;t;, and therefore the vectors e and t are related by

e=~+Ft.

The b-dimensional diagonal matrix F has /; as its entry of position (i, i).

(3)

1.6. Classification
We shall begin by discussing under which conditions the systems (I) and (2) admit at

least one solution, and whether or not their solutions are unique. This approach was first
proposed by De Veubeke (1973). Following Pellegrino and Calladine (1986), we consider
the matrix A as a linear operator between two vector spaces: the bar space 9th and the joint
space 9t 3j

-
c

• The four fundamental subspaces associated with A, which in fact coincide with
the subspaces associated with the compatibility matrix B ( = AT), are shown in Fig. I. Note
that the dimensions of the four subspaces can be easily computed once the rank r of the
equilibrium matrix is known. Pellegrino and Calladine (1986) show a possible way of
computing a basis for each of the four subspaces.

The conditions for existence and uniqueness of a solution to the systems (I) and (2)
can be derived from the following four cases.

If the Left-nullspace of A has dimension m = 0, any load I can be equilibrated by the
assembly in its initial configuration; therefore (I) admits at least one solution for any I.

·1
~ Equilibrium A Compatibility B

Rowspace: bar tensions in Column space: compatible
equilibrium with loads in the bar elongations.

Bar space
column space.

gf .L .L

':' Nulispace: states of Lefl·nuIJspace:
~ self-slress. incompatible
II.. (Solutions of At = 0 ) bar elongations

Joint space
Sl3j~

Column space: 10ads which

can be equi6bra1ed in the

initial configuration.

.L
Left·nuUspace: loads wbich

cannot be equi6bratcd in the

initial configuration.

Row space: extensional

displacements.

.L
Nullspace: ineXlensionai

displacements.

(Solutions of Bd =0)

Fig. 1. The four fundamental subspaces associated with the equilibrium matrix A and the com­
patibility matrix B( =Al). A simple algorithm to compute a basis for each of the four subspaces
has been described by Pellegrino and Calladine (1986). The sign .. =" indicates that two subspaces

coincide, while".i" indicates that they are orthogonal complements of one another.
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Because the Left-nullspace of A coincides with the Nullspace of B, any set of nodal
displacements d is extensional, and therefore associated with a unique set of compatible
elongations; this implies that (2) admits at most one solution. Assemblies with m = 0 are
known as kinematically determinate.

If m > 0 the assembly is kinematically indeterminate, and m is the number of inde­
pendent inextensional mechanisms. The system (I) can be solved only for loads I which lie
in the Column space of A, otherwise it admits no solution. The solution of (2), for any set
of compatible elongations e, is not unique.

If the Nullspace of A has dimension s = 0, the assembly admits no sets of self­
equilibrated tensions; it is therefore statically determinate. The system (I) has at most one
solution for any loads I in the Column space of A. Because the Nullspace of A coincides
with the Left-nullspace ofB, all sets of bar elongations are compatible; therefore (2) admits
at least one solution for any e.

If s > 0 the assembly is statically indeterminate, and s is the number of independent
states of self-stress it admits. The solution of (I) is' not unique for any I in the Column space
of A. The system (2) can be solved only for elongations e which lie in the Column space of
B, otherwise it has no solution.

From the foregoing discussion, we expect that the analysis of a given structural
assembly poses different problems depending on whether the assembly is kinematically
determinate or indeterminate, and whether statically determinate or indeterminate. A pre­
liminary step is the introduction of the four types of structural assemblies set out in Table
I. Examples of each type of assembly are encountered in structural engineering: types I
and III include the more common braced frameworks used for reticulated domes, electrical
transmission towers, etc.; typical examples of type II and type IV assemblies are the hanging
cables shown in Figs 3 and 4 and the cable net of Fig. 6, respectively. "Tensegrity" systems,
discussed by Fuller (1975), Calladine (1978) and Hanaor (1987), are also of type IV.

The analysis of type I assemblies poses no difficulty, because both the system of
equilibrium equations and that of compatibility equations have square coefficient matrices
of full rank. Given a set of loads I and imposed elongations ~, one can solve (I) for the
tensions t, then obtain the elongations e from (3), and finally solve (2) for the displacements
d. All other types involve one or more departures from this straightforward route, and are
discussed in the following sections.

The layout of the paper is as follows. In Section 2, primarily concerned with assemblies
of type III, we determine a unique set of bar tensions among an s-dimensional infinity
which are all in equilibrium with an applied load. In Sections 3 and 4 we extend the analysis
to prestressed assemblies of types II and IV; we introduce square modified equilibrium and

Table I. Four different types of structural assemblies

Assembly type

Statically determinate and
kinematically determinate

II Statically determinate and
kinematically indeterminate

III Statically indeterminate and
kinematically determinate

IV Statically indeterminate and
kinematically indeterminate

Dimensions of Nullspace
and Left-nullspace Static and kinematic features

s = 0 Both (I) and (2) have a unique
m = 0 solution for any r.h.s.

s = 0 (I) has a unique solution for some
m > 0 particular r.h.s., but otherwise no

solution. (2) has an infinite number
of solutions for any r.h.s.

s> 0 (I) has an infinite number of
m = 0 solutions for any r.h.s. (2) has a unique

solution for some particular r.h.s ..
but otherwise no solution

s> 0 Both (I) and (2) have an infinite
m > 0 number of solutions for some

particular r.h.s., but otherwise no
solution

The structural response of all four types is analysed in this paper: types I and III in Sections I and 2, and types
II and IV in Sections 3-5.
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compatibility matrices. from which we can make linear predictions of response. In Section
5 we discuss the stiffening response of type IV assemblies and, for the most common type
(s = I), we introduce a non-linear correction based on the solution ofa single cubic equation.
In Section 6, we compare our predictions with experimental measurements taken on a
saddle-shaped cable-net. A discussion of the approach proposed in the paper, and of its
limitations, and a summary of the analysis method conclude the paper.

2. STATICALLY INDETERMINATE AND KINEMATICALLY DETERMINATE ASSEMBLIES

In this section we compute the response of an assembly with s > 0 and m = 0, that is
an assembly of type III, to a set of nodal loads I and imposed elongations ~. Such an
assembly has a rectangular equilibrium matrix, with more columns than rows. The solution
t of the system of equilibrium equations (1) can be written in the form

t = l' +55oc, (4)

where l' is any set of bar tensions in equilibrium with the applied load I; 55 contains s
independent states of self-stress, that is a basis of the Nullspace of A, arranged by columns;
oc is an arbitrary vector ofs real coefficients. It can be readily shown that eqn (4) is a solution
of eqn (1) for any oc: simply substitute (4) into (1) and recall that any state of self-stress
solves the homogeneous system of equations At = O. It can be also shown that all solutions
of eqn (I) are obtained from eqn (4), when oc varies in f}ls.

Several matrix algorithms to compute t' and 55 are available (Strang, 1980; Golub
and Van Loan, 1983). The simplest of all, based on Gaussian elimination with partial
pivoting, transforms the matrix A by row operations into a generalized upper triangular
matrix A(row echelon form); the same operations transform the vector I into T. The systems
At = I and At =I admit identical solutions.

It is convenient to operate on the adjoint matrix A II, which can be transformed by
row operations into AII (see Fig. 2). In Fig. 2, the r (= 5) columns of Awhich contain
pivots have been marked *; the corresponding columns of A, also marked *, form a set of
linearly independent vectors spanning the Column space of A. The s (= 2) columns not
marked * correspond to the redundant bars of the assembly.

We shall denote by A' the (3j- c x r) matrix obtained by deleting from A the columns
which correspond to the redundant bars.

2.1. Bar tensions t' in equilibrium with t.
The s components of l' which correspond to redundant bars can be set equal to zero,

while the remaining r components of l' are calculated from AIT, through a straightforward
back-substitution. The columns of Anot marked * do not enter this process, therefore in
practice the back-substitution involves only a square upper-triangular matrix. Obviously,
the result of this operation is uniquely determined.

• • • • • • • • ••

A

b(>3j-c)

Fig. 2. Transformation of All into AITfor an assembly of type III. The rank r of A is equal to the
number ofcolumns which contain a pivot; these columns are marked • in the figure. Note that each
row contains a pivot, hence r =3j-c, s> 0 and m =O. The same technique can be applied also
to assemblies of types II and IV, in which case all entries in the bottom m rows ofA vanish. Details

on the transformation. numerical strategy, etc. can be found in Pellegrino and Calladine (1986).
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2.2. States ofself-stress SS.
The first state of self-stress has t i = - I in the first redundant bar. and t, = 0 in the

other (s-I) redundant bars. The tensions in the non-redundant bars are then the unique
solution of At = 0, easily obtained by back-substitution. The second state of self-stress has
t; = - I in the second redundant bar and t i = 0 in the remaining (.I' - I). and so on. This
process generates a set of s independent states of self-stress for the assembly. which form
SS. There are many other ways of generating a set. usually different. of independent states
of self-stress; for instance Gillis and Gerstle (1961). Filho (1966). and Robinson and
Haggenmacher (1970) have proposed that the criterion for choosing one particular set
should be that of achieving optimal numerical conditioning of the matrix SSTF S5, while
Kaneko et al. (1982) and Berry et al. (1985) discuss algorithms which minimize the band­
width of SSTF SS. Because in this paper we are not concerned with detailed computational
aspects, we have chosen the easiest of all procedures.

Among the s-dimensional infinity [eqn (4)] of bar tension sets which satisfy the equi­
librium equations (I), we choose that particular value of :x which gives geometrically
compatible bar elongations. Substitution of eqn (4) into eqn (3) yields

e = ~+F(t' +SS:X), (5)

which expresses the set of bar elongations in terms of s unknown parameters. Precisely s
conditions are obtained by imposing that the elongations [eqn (5)] be orthogonal to the
subspace of incompatible elongations (Left-nullspace of B). Recalling (Fig. I) that the Left­
nullspace of B is spanned by s independent states of self-stress, the orthogonality condition
can be written in the form

(6)

from which, substituting eqn (5) and tidying up

(7)

which is indeed a system of s linear equations in the s unknowns oc. This system has a unique
solution for any r.h.s. because its (s x s) coefficient matrix SSTF SS is not singular, the s
rows of SST being independent and F diagonal (Strang. 1980). Equations equivalent to eqn
(7) can be found in textbooks on matrix analysis of structures which cover the Force
Method [e.g. Pestel and Leckie (1963) or Livesley (1975)], where they are obtained through
a virtual work argument. Similar equations have been used by Robinson (1966), in the
development of the Rank Force Method, and Przemieniecki (1968), by minimizing the total
energy in the assembly.

After solving eqn (7) for OC, we obtain t from eqn (4). To complete the analysis, we
evaluate e from eqn (3), and then solve eqn (2) for d. Because e is compatible, the s rows
ofB corresponding to redundant bars, and also the corresponding elongations in the vector
e, can be neglected. Thus, we are left with an (r x r) square compatibility matrix B' and an
elongation vector e' of size r. Note that B' is the transpose of the matrix A' introduced
earlier. The system

B'd = e' (8)

can be solved by any standard method. However, by keeping a record of the row operations
which transform A into A, several computations can be saved.

3. BAR TENSIONS AND INEXTENSIONAL DISPLACEMENTS OF KINEMATICALLY
INDETERMINATE ASSEMBLIES

Now, let us consider a kinematically indeterminate assembly which is in equilibrium,
in the given configuration, under an initial load 10 and prestressing bar tensions to:
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(9)

If the assembly is statically indetenninate as well, some imposed bar elongations ~ (obtained
by altering the length of one or more bars) may be the cause of to: in this case 10 could be
zero. We shall assume that the prestressed assembly is in stable equilibrium in its initial
configuration, and hence that a positive first-order stiffness will resist any inextensional
defonnation.

Our aim in this section is to compute the change of bar tensions Jt which is caused by
an additional load 151 and additional imposed elongations J~, As noted in Section I, the
system (I) of equilibrium equations will admit no solution if 151 has a non-vanishing
component in the Left-nullspace of A. However, our assembly has two distinct ways of
equilibrating an additional load 151: it can (i) alter its bar tensions by Jt and hence carry
the load with little displacement from its initial configuration, and indeed the system of
equations (1) accounts for this type of behaviour only; or (ii) deform inextensionaJly at
approximately constant stress, in which case the load is equilibrated by out-of-balance
forces arising from the change of geometry (Kuznetsov, 1973; CaUadine, 1982; Pellegrino
and Calladine, 1984, 1986). In many instances the assembly responds by a combination of
modes (i) and (ii); we shall analyse this combined response after investigating each mode
separately.

For the sake of generality, we shall refer explicitly to statically indetenninate and
kinematically indetenninate assemblies (type IV). We shall assume that some preliminary
computations have been perfonned to obtain m independent inextensional mechanisms
d l,d2

, ••• ,d"', fonning the (3j-cxm) matrix D, and s independent states of self-stress,
fonning the matrix SS. A possible way of obtaining D and SS, which is fully described by
Pellegrino and Calladine (1986), involves the transfonnation of the adjoint matrix All,
where I is a (3j-c x 3j-c) identity matrix, into All by row operations similar to those in
Section 2. From A, we can detennine the rank r ofA and also, ifs > 0, s independent states
of self-stress fonning the matrix SS, as in Section 2. This calculation also identifies a set of
s redundant bars, and hence the (3j-c x r) matrix A'. The bottom m rows of I, which
correspond to rows of Awithout pivots, provide us with a set of independent inextensional
mechanisms, from which we fonn D.

3.1. Mode (i)
Recall (Fig. I) that the Column space of A contains aU of the loads which can be

equilibrated in the initial configuration; we shall denote such loads by JI(i). Because the s
redundant bars provide no additional ability to carry loads, the full system of equilibrium
equations (I) can be replaced with

(10)

where A' is the (3j - ex r) matrix defined in Section 2; J( contains the changes of axial
forces in the r non-redundant bars. The system (10) is, of course, the complete system of
equilibrium equations for the statically detenninate assembly obtained by removing the s
redundant bars from the original assembly.

Given a load Jl(i>' eqn (10) admits a unique solution. We can find c5(, in analogy with
Section 2, by transfonning A' IJI(i) into ArIJI(i): c5( is given by the top r entries of c5I(i), The
remaining m entries of JI(i) will vanish; indeed, a non-vanishing entry in the lower part of
this vector would show that c51(i) does not lie in the Column space ofA. Because the original
assembly has s redundant bars as well, we fonn a b-dimensional vector c5t' by interspersing
s zeros (each corresponding to one of the redundant bars) among the r entries of c5(. Note
that the bar tensions c5t' are in equilibrium with (5)<i). To complete the calculation, we
consider the general solution of the system of equilibrium equations c5t = c5(+SS~ and
compute ~ from the compatibility equations
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For statically determinate assemblies (s = 0) A = Ar and bt = btr
, and therefore these

additional computations are not required.
The prestressing tensions to due to the initial load 10 (which must lie in the Column

space of A) and to the imposed elongations ~, could be computed following precisely this
method. In practice, though, this computation can become part of the initial transformation
of A II into AII. if 10 is known at the outset. An example is shown in Section 4.

3.2. Mode (ii)
Any infinitesimal inextensional displacement from the original configuration, while

leaving (to the first order) the prestress unchanged, results in unbalanced loads of magnitude
proportional to the size of the displacement. A general inextensional displacement d(ii) is
given by

D/l = d(ii), (II)

where D is the (3j-cxm) matrix of inextensional mechanisms defined above; /l contains
the m participation coefficients of these mechanisms.

The out-of-balance forces associated with d(ii) are

(12)

where each column of the (3j- c x m) matrix G represents the geometric loads or "product
forces" (Pellegrino and Calladine, 1984, 1986), associated with an inextensional mechanism.

The geometric loads in eqn (12) are obtained from the following considerations. Let
joint i be an unconstrained joint of the assembly, connected by bar k to joint j. The
equilibrium equation in the x-direction ofjoint i, with the assembly in its initial prestressed
configuration, is

(13)

where Xj is the x-coordinate of joint i, Lk is the length of bar k, tOk is the prestressing force
in bar k, and IOjx is the x-component of the initial load 10 on joint i. The summation in eqn
(13) is extended to all bars connected to joint i. Equation (13) coincides with one of the
equations in system (9). We then consider the equilibrium equation in the x-direction of
joint i, with the assembly in an infinitesimally displaced configuration obtained by imparting
the inextensional displacement dhPh' where Ph is sufficiently small. Assuming that all bar
tensions are unchanged from to, the new equilibrium equation is obtained simply by
replacing the initial joint coordinates in eqn (13) with their updated values; hence Xi becomes
(xj+dtPh), and similarly Xj becomes (xj+d}'..Ph)' All bar lengths remain unchanged because
the imposed displacement is inextensional. An additional force Ott is required on the r.h.s.
to satisfy equilibrium. Thus, the updated version of eqn (13) is

(14)

Subtracting eqn (13) from eqn (14) we obtain

(15)

The summation in parentheses gives the x-component of the geometric load at joint i
associated with a unit amplitude of mechanism h, hence one of the coefficients in column
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h of G. Similar expressions are valid in the y- and z-directions. It is noteworthy that the
term in brackets in eqn (15) can be obtained formally from eqn (13), simply by replacing
each nodal coordinate with the corresponding component of inextensional displacement.

A kinematically indeterminate assembly in which the axial forces remain constant at
the level to would be able to equilibrate any load increments which lie in the Column space
of the matrix G, simply by distorting in an inextensional mode. For any such loads, the
system of linear equations (12) admits at least one solution. In fact G has full rank for most
prestressed assemblies used in practice, and therefore the solution pof eqn (12) is unique.
Once pis known, the displacements due to ol(ii) are obtained from eqn (11).

3.3. Combined response in modes (i) and (il)
Now we can analyse the response ofa prestressed kinematically indeterminate assembly

to a general load increment 01. Since the load is resisted by the combined action of modes
(i) and (ii), we consider the sum of eqns (10) and (12)

A'of + G P= ol(i) + ol(ii).

The r.h.s. of this system is precisely 01 because our hypothesis, that the assembly is in stable
equilibrium in its initial configuration, and hence that the quadratic form pTGTD pis positive
definite (Calladine and Pellegrino, t990), implies that the prestress stiffens all m inextensional
mechanisms. Hence A' IG spans the joint space.

The bar tension changes of and the displacement coefficients Pdue to 01 can be
computed by solving the following system:

(16)

Here, the coefficient matrix AT = A'IG is a new square equilibrium matrix of size (3j-c).
These new equilibrium equations are valid not only for the original configuration of the
prestressed assembly, but also in all distorted configurations obtainable through inex­
tensional displacements of infinitesimal magnitude.

A further set of r geometric loads which correspond to the· extensional modes of the
assembly could be easily introduced; indeed, they would coincide with the "imaginary
loads" used by Argyris (1964) for the analysis oflarge-displacement problems by the Force
Method. These additional geometric loads would be then simply added to the columns of
A' (Pellegrino, 1986), but their effect on the final solution has been found to be negligible
in most cases.

The system (16) can be solved uniquely for the vector ot"lP, which contains the mixed
set of unknowns of this formulation. Because AT has full rank, eqn (16) can be solved by
any method for the solution of systems of linear equations. However, it i~ convenient to
use Gaussian elimination on A' 101; the first r columns of AT need not be transformed again,
provided that details of the transformation from A to Ahave been stored in a suitable way,
(Strang, 1980). Once of and p have been computed, the complete solution ot is obtained
following the procedure described above with reference to mode (i), while the inextensional
component of the nodal displacement is d(ii) = D p.

The validity of eqn (16) rests upon the assumption that the bar tensions remain at the
level to, while in fact they become to+o1. If ot is small relative to to, there is no need to
refine this analysis. Otherwise the geometric loads G should be recomputed on the basis of
the updated tensions to+ot, and an improved estimate of ot obtained from a modified
system (16). This process converges after only a few iterations; typically, up to 10 iterations
are required for problems in which the final stress level is approximately double the prestress.
So far, in each iteration the matrix G has been calculated using the tensions computed in
the previous iteration, without any attempt to optimise the scheme. This is an obvious area
for further work. Some assemblies, e.g. flat grids under arbitrary loads, require at most two
iterations because the Column spaces of A and G are disjoint.

The next task is to compute d(i), the extensional component ofd, due to the elongations
<:5e =o~+F <:5t.
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a) "I- 160 "I- 160----...j

~I
w w

b) 10

Fig. 3. Schematic description of an experiment to investigate the extensional displacements of a
hanging cable under concentrated loads. (a) and (b) show the initial and the deformed configur­
ations, respectively. All dimensions are in mm. The deformation from (a) to (b) is due to the r.h.s.
cable segment being shortened by 10 mm. The measured displacements are given in Table 2.

(c) shows an equivalent plane pin-jointed assembly, which is analysed in Section 4.

4. EXTENSIONAL DISPLACEMENTS OF KINEMATICALLY INDETERMINATE
ASSEMBLIES: AN EXAMPLE

As noted in Section I, the system (2) of compatibility equations admits more than one
solution for any compatible bar elongations Je. Our aim in this section is to identify some
additional conditions which determine a unique displacement vector.

In analogy with Section 2, we delete from eqn (2) the compatibility equations which
refer to the s redundant bars to obtain

B'd(i) = Je', (17)

which is equivalent to eqn (8), but the coefficient matrix B' is rectangular with fewer rows
(r) than columns (3j-c = m+r). In analogy with eqn (4), we can write

d(i) = d' +Dy, (18)

where d' is any set of nodal displacements which are compatible with the elongations Je',
and hence with Je; the term D., represents a general inextensional displacement which
satisfies the homogeneous system B d = 0, and therefore can be freely superposed to d' when
solving eqn (17). To determine the m components ofy, m additional conditions on d(i) must
be found. .

At this stage it may be useful to describe two simple experiments which provided
important clues for the solution of this problem.

In the first experiment (see Fig. 3a), two equal weights were hung by means of short
wires from a thin copper wire whose ends were supported by level drawing pins fixed to a
vertical board. A sheet of graph paper had previously been stuck on the board, to measure
visually both the initial configuration and any displacements from it. The test consisted of
measuring the joint deflections caused by a lO-mm shortening of cable segment I, which
was obtained by letting 10 mm of wire slide through the left-hand pin. The lengths of cable
segments 2 and 3 were fixed by soldering the joints. The horizontal and vertical components
of displacements of these two joints were measured to an accuracy of ±0.5 mm, and are
given in Table 2.



Analysis of prestressed mechanisms

Table 2. Comparison of measured and computed components of nodal
displacement (mm) for the cable shown in Fig. 3
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Displacement components Experiment

-5.0
-12.5
-5.5

-11.0

Computed (Section 4)

-5.2
-12.0
-5.2

-10.3

The three cable segments remained in tension throughout the experiment, and hence
modelling them as solid pin-jointed bars (see Fig. 3c) is acceptable. In the obvious assump­
tion that this problem can be treated as two-dimensional, the relevant matrix/vector dimen­
sions are (2j-c) = (2 x 4-4) = 4 and b = 3. The system of equilibrium equations (I) for
this assembly is

[

0,8944

O.~72

-1

o
1

o

First, we want to find the rank rof A, S =b-r states of self-stress, and m = (2j-c-r)
mechanisms, as well as the tensions to due to 10, We consider the adjoint matrix

[O'8~
-1 0 I 0 0 0

iJ
0.4472 0 0 0 1 0 0

AIIllo = ~ I -0.8944 0 0 I 0

0 0.4472 0 0 0 1

and we transform A into Aby row operations

[ I

0 0 1.118 0 1.118 2.236

2.n6~_ _ 0 1 0 0 0 1 2 2W
Altl~ = ~ 0 1 0 0 0 2.236 2.2~6W

0 0 -0.5 1 -0.5 -1

From this matrix we can extract the following information:

-the rank of A is r = 3, since three pivots have been found;
-there are no states of self-stress, and hence A' = A, since each column of Acontains

a pivot;
-there is only one inextensional mechanism, which corresponds to the row of A

without a pivot, and is found in the last row ofT: d 1 = [-0.5 I -0.5 -If.
Hence we conclude that this assembly is of type II ;

-the load 10 lies in the Column space of A, since the last entry orlo (corresponding to
the row of Awithout a pivot) vanishes;

-the tensions to, given by the remammg entries of To, are to =
[2.236 W 2W 2.236 wV. This result can be verified by elementary statics.

The nodal displacements caused by the elongations o~ =[- 10 0 oyimposed during
the experiment, and certainly compatible since all elongation sets are compatible for a type
II assembly, have to satisfy the system (17)
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[

0.8944

-1

°

0.4472

°°
°
1

-0.8944 oLJ
note that in this case B' = AT and be' = b~. To find the general solution of this system. we
transform the matrix B'I be' by row operations into

° 0
I 0

° I

-0.5

1

-0.5

from which, by the technique already used in Section 2, we express the solution (18) as

= [-2~'36] [_~'5]d 0 + -0.5 y.

o -1

(19)

It is clear from the experiment that the displacement d is uniquely defined, and therefore
an additional condition on d must exist, by which the one component of y can be fixed.

One might guess that, because the deformation under investigation is of an extensional
type, perhaps d should be orthogonal to the inextensional mechanism d I. In a more general
case, this condition would yield m independent equations, which is precisely the number of
components of y (however, on reflection, no sound mechanical argument seems to support
this conjecture). Imposing this orthogonality condition on eqn (19), we obtain the equation

[ [
0 ] [-0,5] JT [-0,5]-r6

+ _~/ 1 . -~;5 -0,
(20)

from which 7 = [8.94J and hence d = [-4.5 - 13.4 -4.5 -8.9jT (mm), which is
clearly in poor agreement with the measured values, shown in Table 2.

Rather surprisingly, if we compute from eqn (15) the vector of geometric loads associ­
ated with d l

0.OO625W[-1 6 -1 -6V,

and replace the inextensional mechanism on the I.h.s. ofeqn (20) with this vector. we obtain

7=[10.32] and d=[-5.2 -12.0 -5.2 -1O.3V(mm).

Having made allowance for the experimental error of ±0.5 mm, these values are very
accurate indeed.
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1 s

ISO
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Fig. 4. Alternative experimental layout discussed in Section 4. AlI dimensions are in mOl. The
displacements which were measured after the r.h.s. cable had been shortened by 10 mOl are given

in Table 3.
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The second experiment (Fig. 4) was conceptually similar to the first, but on an assembly
which has two independent inextensional mechanisms. Therefore, to identify d uniquely,
we have to impose two conditions on f. Extending the approach successfully adopted for
the first experiment, we have imposed an orthogonality condition between d and all vectors
of geometric toads. The results shown in Table 3, which support our conjecture, have been
obtained by solving a system of two equations in the unknowns f.

It can be shown that the orthogonality between extensional displacements andgeometric
loads constitutes a general property of prestressed mechanisms; the proof, based on virtual
work, is as follows. First, we consider the assembly in its initial configuration. As a force
system, in equilibrium, we consider 10 and to; as a displacement system we consider a general
set ofextensional displacements d(i) and the elongations oe which are compatible with them.
The equation of virtual work is

(21)

Secondly, we consider the assembly in a modified configuration which is obtained by
imposing a small inextensional displacement D /l; the vector /l can have arbitrary, small
values. As a force system we consider 10+G /l and to which, by definition of geometric loads,
are in equilibrium in the configuration considered; as a displacement system we consider
the same d(i} and Oe as above-they are still compatible because the change ofconfiguration
has been small. In this case the equation mvirtual work is

(22)

Subtracting eqn (21) from eqn (22), we obtain

Table 3. Comparison of measured and computed components of
nodal displacement (mm) for the cable shown in Fig. 4

Displacement components Experiment

-5.5
-8.5
-5.5
-8.0
-3.5
-4.0

Computed

-5.4
-8.7
-5.5
-8.2
-4.2
-4.2

The computed values have been obtained solving an ordinary
system of four compatibility equations, and imposing two
additional conditions of orthogonality to the vectors of geometric
loads associated with the two inextensional mechanisms.
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and, given that p can take any values. the above scalar condition is equivalent to the m
conditions

(23)

which is precisely what we set out to prove. Note that the above argument demonstrates
that the orthogonality between extensional displacements and geometric loads originates
from an equilibrium condition.

In conclusion, the evaluation of the components of nodal displacements d1i
) caused by

the compatible elongations Je requires that the system of compatibility equation (17) be
solved subject to eqn (23). These two sets of equations can be combined into

(24)

which is a system of (3j-c) linear equations and (3j-c) unknowns. It is remarkable that
the square coefficient matrix

B' = [~~J

is the transpose of the matrix A' in eqn (16). Thus, the well-known static-kinematic duality
B = AT carries on to the present "mixed" formulation. It is noteworthy that:

-the system (24) admits a unique solution if the prestress to stiffens all m inextensional
mechanisms;

-the extensional displacement dO) due to a set of compatible elongations Je may
change if the prestressing tensions to, and hence the geometric loads G, are altered;

-the system (23) is satisfied by any displacement dO) if the assembly is not prestressed.

5. NON·LINEAR RESPONSE IN MODE (ii)

The essentially linear analysis described in Sections 3 and 4 has been tested extensively
by Pellegrino (1986), and found to be remarkably accurate for type II assemblies. However,
it has been found that type IV assemblies loaded in mode (ii) undergo significant increases
of prestress, and hence deform less than predicted by our linear anlysis. This is because
only an infinitesimal magnitude of the computed mechanisms is truly inextensional : as the
load on the assembly is increased, each bar is required to alter its length a little, and hence
the assembly tightens up. This non-linear effect, unaccounted for by the foregoing analysis,
is best introduced as a final correction of the results obtained from the linear theory. The
correction is significant in type IV assemblies, but becomes practically negligible in type II
assemblies, where using slightly inaccurate displacement modes remains confined to the
computation of nodal displacements, with little effect on the bar tensions.

For the sake ofsimplicity, we refer to an assembly with arbitrary m > 0 but s = 1, thus
the matrix 55 reduces to the column vector ss; furthermore, we assume that the assembly
is self-stressed, hence the initial tensions to are in equilibrium with 10 = o.

We apply on the assembly a purely inextensionalload 01 = ol(ii) and, assuming that the
prestress level does not change, compute its response using the linear theory. For the load
condition chosen, the analysis is particularly simple, we solve the system (12) for the
participation coefficients pand [from eqn (II)] the nodal displacements are d = d1ii

) = D p.
For each bar, we compute the difference between length in the final configuration and length
in the initial configuration, each obtained by Pythagoras' theorem, and store these undesired
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elongations in a vector e". These elongations occur because the path described in (3j-c)­
dimensional space by the displacement vector d when 01 is applied, although initially tangent
to the vector d(ii), diverges from it as the load on the assembly is increased. To eliminate
these undesired elongations, we plan to subject the assembly to the opposite set of elon­
gations - eC

•

The compatible part of -e', given by

-e" +Fssoc, (25)

[see eqns (5) and (7)], causes a set of corrective displacements dC, which we can calculate
from eqn (24). The incompatible part of _eC causes the self-stress increase ssoc (note that,
in the present context, (X is a scalar, since s = I). Thus, the nodal displacements would
become d(ii) +dC and the bar tensions to + ss (X; however, the assembly would not be in
equilibrium in this displaced configuration, because the geometric loads used for the analysis
were based on to only.

To account for the increase ofstress level in an approximate way, we consider a reduced
inextensional displacement vector ed(ii), with 0 < e < 1; the elongations associated with it
are reduced to e2e", and hence the corrective displacements are e2dc

• The stress level increase
associated with this reduced displacement vector is e2ss 0:.

We shall use virtual work to find an equilibrium equation in e. With the assembly in
the configuration defined by the displacement vector

(26)

we consider as a force system the applied load ol(ii) and the bar tensions to+e2ss (X, in
equilibrium. As a displacement system we consider the nodal displacements (d(ii)+2ed') de,
obtained by differentiation of (26), and the bar elongations 2 eee de associated with them.
Equating external work to internal work and dividing by de we obtain

OI(ii)T(d(ii) +2ede) = (to + e2ss (Xf2 eee.

Recalling that a compatible elongation is orthogonal to any state of self-stress (Fig. I), it
can easily be verified that the incompatible part of ee does not contribute to the dot product
on the r.h.s. Therefore we can write the above expression as

(27)

It can be shown by a simple energy argument, for an assembly with bar tensions which
remain constant at to, that ol(ii)T(!d(ii) _de) = t~Fss 0:; hence, dividing eqn (27) by OI(ii)Td(ii)

(28)

from which ecan be computed. The main stages of this non-linear correction are highlighted,
for a simple example, in Fig. 5.

...1..f------2-----t-114-·--1-----.l

I). .5 AI t~- y----------.,...--'G1O.'3 -.12-1--'1'
0.333 ,

+ 1" 2
-.It--
0.027

Fig. 5. Non-linear correction for a simple two-bar assembly. The initial, linear analysis of this
problem yields a purely vertical displacement vector (point 1). The corrective displacement d'" is
purely horizontal (point 2); the prestress level corresponding to this deflection is 146 units, instead
of the initial 10. The cubic equation in B has the solution B == 0.363, which corresponds to a prestress

level of 27.9 units. The "corrected" deflection is shown by point 3.
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For an assembly with s independent states of self-stress, e would be replaced by an s­
dimensional vector, and we would end with a system of s cubic equations broadly similar
to eqn {28}. The accuracy of this method is being checked.

Finally, the reader should be reminded that the non-linear correction introduced above
has the following two limitations. Firstly, it assumes that--although large enough to cause
significant changes of bar tensions-the configuration change must be sufficiently small to
justify the use of joint equilibrium equations which refer to the original configuration.
Secondly, it assumes that the reduction in displacements caused by the self-stress increase
can be dealt with by one parameter only, if s = I, regardless of the number of joints. These
assumptions appear to be entirely acceptable in many problems of practical interest, as
discussed in the next section.

6. AN EXPERIMENT

A series of careful tests on cable structures has been carried out to validate the present
approach. Here only a representative experiment will be discussed, but a fuller report is
available in Pellegrino (1986). Figure 6a shows a sketch ofa saddle-shaped cable net which

a)

-----+------+------ 12

6 10

b)
® ®

0 5 CD 9 0
2

y

® zLx @

Q) 4 0 8 CD

Q) @

3 1

Fig. 6. (a) Sketch showing the cable net discussed in Section 6, with support frame. (b) Plan view
showing node and bar numbering systems; the nodal coordinates are given in Table 4. The :-axis

is upwards.
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Table 4. Nodal coordinates (mm) of
cable net shown in Fig. 6

Node x y ::

I -961 -305 155
2 -961 305 155
3 -305 -961 -146
4 -305 -305 0
5 -305 305 0
6 -305 961 -146
7 305 -961 -146
8 305 -305 0
9 305 305 0

10 305 961 -146
11 961 -305 155
12 961 305 155

was tested in the Structures Laboratory of Cambridge University Engineering Department.
The assembly consists of two parallel sagging wires (segments 1, 2, 3 and 4, 5, 6 of Fig. 6b)
connected by adjustable tensioning devices to a steel supporting frame, and of two similar
hogging wires at right angles to them. The measured coordinates of the joints are given in
Table 4. The wires, of high tensile steel "piano wire" (27-gauge, Le. 0.42 mm diameter).
were connected by steel bolts in which holes at right angles had been drilled. Apart from
some small irregularities in its shape, which had to be introduced for various practical
reasons, this cable net is the simplest of a family which has been discussed by Calladine
(1982) and Pellegrino and Calladine (1984).

Our analysis shows that a pin-jointed assembly with the geometry of Fig. 6.
(3j-e) = 12 and b = 12, has r = II and hence it is both statically indeterminate, with
s = I, and kinematically indeterminate, with m = I. Therefore this assembly is of type IV.
Its state of self·stress is proportional to

[a b a a ba edee deY,

where a = 1.027, b = 1, e = 1.088 and d = 1.062; its inextensional mechanism is pro­
portional to

[e -I g -e -I -g e1 -g -e1 gy,

where e = 1.062,1= I, and g =4.493. Once presented, this assembly has a set ofgeometric
loads whose directions resemble the mechanism displacements, although they do not actu­
ally coincide with them.

In the test, the prestress was set at about 80 N. Two different load cases were inves­
tigated and, in each case, the load was applied in 10 increments of 5 N each. After each
load increment, all bar tensions and all components of nodal displacement were measured.

The first load condition consisted of four equal vertical loads directed downwards, on
nodes 4,5,8,9, which involve only mode (i) response. Figure 7 shows some selected results
from this test. Note that all plots are more or less linear, as indeed one would expect for a
load condition which does not excite the non-linear stiffening effect discussed in Section 5.
It can be seen from Fig. 7a that the horizontal square in the middle of the net translates
downwards, and from Fig. 7b that the tension in the sagging wires (segments 1-6) increases,
white the tension in the hogging wires (segments 7-12) decreases. Our theoretical analysis
predicts that the hogging wires become slack at a load of about 41 N; this is confirmed by
the experiment. The deflection/load plots (Fig. 7a) show that the assembly becomes softer
at about this value of the load; this is due to the sudden transition from a cable net to an
assembly of two independent (sagging) wires. A similar softening is detected in tests on
beams supported by unilateral constraints, when the beam loses contact with a support.
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Fig. 7. Plots of displacements (a) and wire tensions (b) vs applied load for the cable net of Fig. 6.
The load condition consists of four equal downward forces. The variable "load" plotted is the value
of only one of these forces. Note that the hogging cables become slack at a load of about 41 N.
The technique used for measuring wire tensions (Pellegrino, 1986), although very reliable for values

above 4(}-SO N, become less reliable at lower tensions.
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We could, of course, repeat our analysis after removing the members which have gone
slack.

The second load condition consisted of two equal downward loads acting on nodes 5
and 8. This load system excites both modes (i) and (ii), and hence involves some non-linear
increase of the prestress level, as explained in Section 5. This effect can be seen clearly in
Fig. 8; in particular, the tensions in the hogging wires decrease at low loading levels­
due to mode (i) prevailing-but then remain approximately constant as the prestress
increases.

In both tests, the agreement between experimental and predicted values, based on the
theory developed in earlier sections, is good in spite of the simplifications introduced. It
should be noted that the largest measured deflection (about 30 mm) is only 1.6% of the
total span although the applied load more than doubles the initial tensions, confirming a
remark, in the Introduction, that often a full non-linear analysis is not required.

7. DISCUSSION

The approach presented in this paper captures the main features of the response of
prestressed mechanisms, thus providing some useful tools for anticipating the effects of
design changes, spotting which load conditions are likely to be critical for some particular
effect (e.g. to cause cable slackening), etc. Although the method is based on a small
displacements theory, it has been shown that tensions and displacements can be predicted
within a few percent of measured values. These small errors should certainly be acceptable
for most applications, and certainly at the stage of a preliminary design, when several
alternatives are being considered; a more conventional non-linear analysis may be carried
out as a final check, if necessary.

Comparisons between a computer program based on the present approach, and a
geometrically non-linear finite element program which uses a tangent stiffness matrix within
an incremental procedure with corrective iterations (See, 1983), have shown that the finite
element program is between two and five times slower, depending on the type and magnitude
of the load condition.

An important issue in the design of prestressed mechanisms, which has not been
addressed in this paper, is that of finding configurations which are suitable for prestressing.
In some cases these initial configurations can be found by an ad hoc method, which is
rather easy for the cable systems of Figs 3, 4 and 6. General techniques for the solution of
the non-linear equations involved have been discussed in the literature [see e.g. Day (1965)
and Barnes (1984)], but the present approach could be used in that context as well. Clearly,
if the configuration changes are large, the matrices A and B need to be updated. So far,
some encouraging results have been obtained for trusses which are "deployed" by gradually
shortening one or two cables (Kwan and Pellegrino, 1989).

Finally, returning to the hypotheSls(Section 3) that the prestressed mechanism should
be in stable equilibrium in its initial configuration, it should be noted that the present
method ofanalysis can easily be extended to assemblies which, due to insufficient kinematic
constraints, have some rigid-body mechanisms. A general technique to separate out the
rigid-body mechanisms from the internal mechanisms is available in Pellegrino and Cal­
ladine (1986). Clearly, zero geometric loads will be associated with these rigid-body di~­

placements, and the corresponding vectors need not be assembled in the matrix G. Thus A'
arid B' are no longer square. However, the response to any load «51 which is orthogonal to
all rigid-body mechanisms can still be found from eqn (16), and the extensional dis­
placements due to compatible elongations be from eqn (24). Of course, rigid-body dis­
placements of indeterminate magnitude will appear in the final answer.

8. SUMMARY OF CALCULATIONS

In summary, the method of analysis described in this paper consists of the following
four steps.
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Fig. 8. As Fig. 7, but for a load system consisting of equal downward forces on nodes 5 and 8.
which are diagonally opposite.
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(i) Preliminary analysis of given assembly:

-<:omputation of equilibrium matrix A;
-transformation of AII into AIJby row operations;
-initialization of matrix D, which contains m independent inextensional mechanisms;
-identification of s redundant bars and equilibrium matrix of reduced size Ar;
-initialization of matrix SS, which contains s independent states of self-stress.

(ii) Calculation of prestress, for given initial loads 10 and elongations ~:

-solution ofArf =10 (possible only iflolies in the Column space ofA) and initialization
of vector t', which contains the entries off interspersed with s zeros;

-solution ofSSTFSS« = -SST(e+Ft').

The corresponding bar forces are to = t' +SSoc.

(iii) Linear response to additional loads JI and elongations J~ :

-<:omputation of m sets of geometric loads, for the current bar forces, stored in the
matrix G;

-solution of [A r IG] [of/JJ] = JI and initialization of vector ot' ;
-solution ofSSTFSS« = -SST(J~+F ot'), from which Jt = bt' +SS«.

The current bar forces are t = to + Jt. If they are significantly different from the bar forces
used when computing G, the above three steps are repeated; otherwise the analysis continues
with

-<:omputation of be =(jg + F Jt, and solution of

The nodal displacements are d = d(i) + D JJ.

(iv) Non-linear correction of (iii), for s > 0 only; see Section 5.
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